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A numerical method is given for the determination of an orientation relationship with high 
accuracy. It  is essentially a least-squares method. 

Conventional  methods for the determinat ion of an 
orientat ion relat ionship are usual ly  carried out by  
means  of manipula t ions  on a stereographic net. How- 
ever, the accuracy of these manipula t ions  is essen- 
t ia l ly  l imited, and if high accuracy is required resort 
mus t  be made, at  least in the f inal  stages, to pure ly  
numerical  methods.  In  recent years the accuracy of 
orientat ion determinat ions  has improved considerably, 
and  in at least one investigation,  concerned with a 
change of phase in the solid state (Bowles, Barre t t  & 
Gut tman,  1950), the accuracy approached 10 rain. 
of arc. Thus, the need for purely numerical  methods 
is apparent .  

An orientation relat ionship is established when the 
rotat ion required to carry a s tandard  orientat ion of a 
crystal  into its actual  orientat ion is known. If, on an 
actual  crystal,  exact  measurements  are made of the 
directions of at least two dist inct  normals  with known 
specific indices this rotat ion can be determined. How- 
ever, if the measurements  are subject  to error the 
angles between pairs of observed normals  will not  be 
exact ly  equal  to their  known true values and some 
ad jus tment  procedure is necessary in order to es t imate  
the rotat ion as precisely as possible. The method of 
ad jus tment  proposed below was developed to solve a 
problem which arose in another  connexion. I t  is 
numerical  and analogous to the classical method of 
least squares for the solution of l inear s imultaneous 
equations. The method can be used whatever  the 
precision of the observations but  its ma in  use lies in 
the f inal  es t imat ion of an  orientat ion relat ionship of 
high accuracy. 

The components of a vector relat ive to a f ixed 
or thonormal  basis can be wri t ten as the elements of 
a 3 × 1 column matr ix .  Therefore, let )/r be the column 
mat r ix  representing the measured uni t  normal  to the 
r th  plane in the actual  crystal  and xr tha t  representing 
the known uni t  normal  to the corresponding plane in 
the s tandard  orientation. Then, if R is the 3 × 3 rota- 
t ion mat r ix  (R R' -- l) which is to be determined and 
0r(0 _< 0r _< ½~) is the angular  deviat ion of )'r from its 
t rue position Rxr, 

c o s 0 r =  y~Rx,  ( r = l  . . . .  , n ) .  (1) 

Now in the method of least squares R would be deter- 

mined so tha t  a sum of the type ZwrO ~ was a min imum.  
However, for 0r small, cos 0r- -  1-½02 so tha t  an 
almost equivalent  procedure is to maximize  the sum 

S = wr cos  0r = ~ : w r % R x r ,  (2) 
r = l  r = l  

where each wr is a known (positive) weight which 
should ideally be chosen inversely proport ional  to the 
variance of 0r. 

If X, Y are 3 × n matrices with xr, Yr in their  r th  
columns respectively and W is the n × n diagonal ma- 
t r ix  with diagonal  elements w ,  then  

S = T r (WY'  P,X) = T r ( R A ) ,  (3) 
where 

A - -  XWY' ,  (4) 

and Tr denotes the sum of the diagonal  elements of 
a mat r ix ;  the last  step follows from the result  tha t  
Tr(BC) = Tr(C B) for all matr ices B, C which can be 
mul t ip l ied  together. Now, for any  mat r ix  A, rotat ion 
matrices R1, R 2 can be found such tha t  

A = R2A R '  1 , (5) 

where A is a diagonal  mat r ix  with non-negative 
elements  and the product  R2R ~ is unique provided 
A'A has not  more than  one characterist ic root equal  
to zero. Murnaghan  (1938) effectively proves this 
result  when A is non-singular,  but  the general result, 
essential ly proved below, is required since A'A will 
have just  one zero characterist ic  root if measurements  
are made on only two normals.  Thus, 

S = T r ( R ~ R R J ~ )  = T r ( R o A  ) ,  s a y .  (6) 

Since the moduli  of the elements of a rotat ion mat r ix  
are less t han  or equal  to unity,  S is m a x i m u m  when 
R 0 = I so tha t  

R = RIR~= (R~.Ri)', (7) 
and 

Smax. = Tr (A) .  (8) 

The procedure for determining R 

The procedure is as follows: Firs t  the exper imenta l  
da ta  are used to compute A from (4), then  R1, R 2 are 
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constructed as below and finally K is given by (7). 
The final result is unique, apart  from symmetry  rota- 
tions. 

The following construction of R 1 and R~ is based 
on the facts that,  ff A is given by (5), R]A'AR 1 = 
R~AA' R 2 - - A  2 and tha t  A ' A  is symmetrical and has 
no negative characteristic roots, i.e. a positive semi- 
definite matrix (Albert, 1941). I t  follows (Ferrar, 1941, 
1951) tha t  a set of mutually orthogonal unit vectors 
ul, u2, u3 can be determined such that  

A'Aur - ~:u,., ~.,. >_ 0 ,  (9) 

where the ~tr 2 are the roots of the determinantal equa- 
tion 

det [ A ' A - ) /  I] = 0 .  (10) 

Thus, a possible choice for R 1 is 

R z = (uz, u 2, u3) ,  ( 1 1 )  

and the diagonal elements of A are 2,. Multiplying (9) 
on the left by A shows that ,  provided ~tr • 0, 

Vr = Aur (12) 

is a characteristic vector of A A' belonging to the 
characteristic root 2~. Further,  it is easily shown that  
the vr so found are mutually orthogonal and of magni- 
tude ~ .  Thus, when all the ~t, are positive, a possible 
choice for R~ is 

R 2 = (viler x, v212~, v3123), (13) 

and this is the only choice consistent with (5) and (11). 
If 2,3 = 0 is the only zero characteristic root, the 

~irst two columns of R2 are found as above while the 
last column is the unique unit vector v satisfying the 
equation 

A'v = 0 .  (14) 

I t  can now be verified readily tha t  R'IA' R 2 = A so 
tha t  A is given by (5). Further,  if all the characteristic 

roots ~., are different the ur and v r are unique so t ha t  
R1, R 2 are each unique, while if the 2r are not all 
different it can be shown tha t  the product R 1 R~ is 
unique although R 1 and R 2 separately are not. 

The above estimate of R can be made reasonable 
from the statistical point of view. For, if, following 
Fisher (1953), it is assumed tha t  the observations are 
independent and that  the probability density of each 
cos 0r is proportional to 

exp (Kwr cos 0r) , (15) 

where Kwr is approximately equal to the reciprocal of 
the variance of 0r, then the above estimate of R which 
maximizes S is just the maximum likelihood estimate. 
Using this density function, the problems of deter- 
mining the probability distributions of R and of Sm~. 
do not appear to be simple and no estimate of con- 
fidence limits can be made at present. However, the 
weighted mean of the expectation values of the cos 0, 
is approximately 1-1/K Tr(W). Calling this quant i ty  
cos 00 and using the maximum likelihood estimate for 
!< gives 

cos 00 = 1-[Tr(W)-Smax.] /n  T r ( W ) ,  (16) 

and 0o may be taken as a rough estimate of the 'reason- 
ably likely' variations in the angle of rotation deter- 
mined by R; 00 will be related in some way to the 
standard error of this angle of rotation. 
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